
Thompson Sampling for a Fatigue-aware Online Recommendation System
Yunjuan Wang and Theja Tulabandhula

University of Illinois at Chicago, USA

Motivation
Platform Sends out a daily/weekly digest
UserClicks on interesting links ormarks sender as spam

Platform Schedules a series of notifications for engagement
UserClicks on notifications and engages with app ormutes

notifications forever

Model
• The platform recommends a (sub)-sequence S of items.
•User’s intrinsic preference for item j ∈ [N] is uj ∈ [0, 1].
•After viewing each item, the user can abandon the platform with
probability 1− q > 0.
• If they abandon, the platform incurs a penalty c > 0.
• If they select j and leave, platform gets revenue rj > 0.
• If they don’t select j and move to the next item in S, platform
gets nothing.
• Let S = (S1, S2, ..., Sm), where Sk denotes item in the kth position
• Let pi(S) denote the probability of selecting item i in sequence S.
• Let pa(S) denote the probability of total abandonment.

Offline Fatigue-aware Recommendations

pi(S) =

⎧⎪⎨⎪⎩
ui if i ∈ S1,

ql−1
∏︀l−1

k=1(1− uSk)ui if i ∈ Sl, l ≥ 2,
0 if i /∈ S.

pa(S) =
m∑︁
k=1

qk−1(1− q)
k∏︁
j=1

(︀
1− uSj

)︀
.

The goal is to find the optimal sequence of items that maximizes
expected utility E[U(S;u, q)] =

∑︀
i∈S pi(S)ri − cpa(S):

max
S

E[U(S;u, q)]

s.t. Si ∩ Sj = ;,∀i 6= j,
and other business constraints,

where E[U(S;u, q)] =
∑︀

i∈S pi(S)ri − cpa(S).

TS-based Algorithm (Algo. 1, precursor to SBORS below)

Initialization: Set ci(t) = fi(t) = 1 for all i ∈ X; ne(t) = na(t) = 1; t = 1;
while t ≤ T do
(a) Posterior sampling:
For each item i = 1, ...,N, sample u′i (t) and q

′(t)
u′i (t) ∼ Beta(ci(t), fi(t)), q′(t) ∼ Beta(ne(t), na(t))
(b) Sequence selection:
Compute St = argmax

S
E[U(S;u′(t), q′(t))];

Observe feedback upon seeing the kt ≤ |St| items;
(c) Posterior update:
for j = 1, · · · , kt do
Update

(cStj(t), fStj(t), ne(t), na(t)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(cStj(t) + 1, fStj(t), ne(t), na(t))
if select and leave

(cStj(t), fStj(t) + 1, ne(t) + 1, na(t))
if not select and not abandon

(cStj(t), fStj(t) + 1, ne(t), na(t) + 1)
if not select and abandon

ci(t+ 1) = ci(t), fi(t+ 1) = fi(t) for all i ∈ [N]
ne(t+ 1) = ne(t), na(t+ 1) = na(t)
t = t+ 1

SBORS Algorithm (Algo. 2)

Initialization: Set ci(t) = fi(t) = 1 for all i ∈ X; ne(t) = na(t) = 1; t = 1;
while t ≤ T do
Update ûi(t) =

ci(t)
ci(t)+fi(t)

= ci(t)
Ti(t)

, σ̂ui(t) =
√︁

αûi(t)(1−ûi(t))
Ti(t)+1

+
√︁

β

Ti(t)
,

q̂(t) = ne(t)
ne(t)+na(t)

= ne(t)
Nq(t)

, σ̂q(t) =
√︁

αq̂(t)(1−q̂(t))
Nq(t)+1

+
√︁

β

Nq(t)
.

(a) Correlated sampling:
for j = 1, ...,R do
Get θ(j) ∼ N(0, 1) and compute u′(j)i (t),q

′(j)(t)
For each i ≤ N, compute u′i (t) = max

j=1,··· ,R
u′(j)i (t), q

′(t) = max
j=1,··· ,R

q′(j)(t).

(b) Sequence selection: Same as step (b) of Algo. 1.
(c) Posterior update: Same as step (c) of Algo. 1.

Regret Gaurantee

(Main Result) Over T rounds, the regret of SBORS is bounded as:

Reg(T;u, q) = E

[︃
T∑︁
t=1

E[U(S∗;u, q)] − E[U(St;u, q)]

]︃
≤ C1N2

√︀
NT logTR+ C2N

√︀
T logTR · logT +

C3N

R
,

where C1, C2 and C3 are constants and R is an algorithm parameter.

Experiments

0 20000 40000 60000 80000 100000
T

0

100

200

300

400

R
eg

re
t

(a)

0 20000 40000 60000 80000 100000
T

0

100

200

300

400

R
eg

re
t

(b)

0 20000 40000 60000 80000 100000
T

0

100

200

300

400

R
eg

re
t

(c)

0 20000 40000 60000 80000 100000
T

0

100

200

300

400

R
eg

re
t

(d)
Figure: Comparison of Algorithm 1 when u is uniformly generated from (a)
[0,0.1], (b) [0,0.2], (c) [0,0.3], and (d) [0,0.5].

0 20000 40000 60000 80000 100000
T

0

100

200

300

400

R
eg

re
t

(a)UCB-based algorithm

0 20000 40000 60000 80000 100000
T

0.0

2.5

5.0

7.5

10.0

12.5

R
eg

re
t

(b)Our algorithm
Figure: Comparison of UCB-based algorithm, UCB-V algorithm and Algorithm 1.

ArXiv: Yunjuan Wang and Theja Tulabandhula. Thompson Sampling
for a Fatigue-aware Online Recommendation System, 2019.

1/1

