Adversarial Robustness is at Odds with Lazy Training

1. Background

• ML systems are fragile and susceptible to imperceptible attacks [GSS15].

57.7% confidence

$+.007 \times$

 $sign(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$ "nematode" 8.2% confidence

 $\epsilon \operatorname{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$ gibbon" 99.3 % confidence

2. Motivation

[SSRD19]: Propose an algorithm to generate bounded ℓ_0 -norm adversarial perturbation with guarantees for arbitrary deep networks.

[DS21]: Multi-step gradient ascent can find adversarial examples for random ReLU networks with small widths.

[BCGT21]: A single gradient step finds adversarial examples for sufficiently wide but not extremely wide randomly initialized ReLU networks.

[BBC21]: Extend the above to randomly initialized deep networks.

Question: why do trained neural networks remain vulnerable to adversarial attacks?

7. Experiments

- Binary MNIST. Networks trained using **SGD** in the lazy regime.
- Recall notation: **m**: network width; $\|\delta\|$: L2 perturbation budget; η : step size; V: maximal weight deviation max $\|\bar{w}_s - w_{s,0}\|_2 = C_0 / \sqrt{m}$

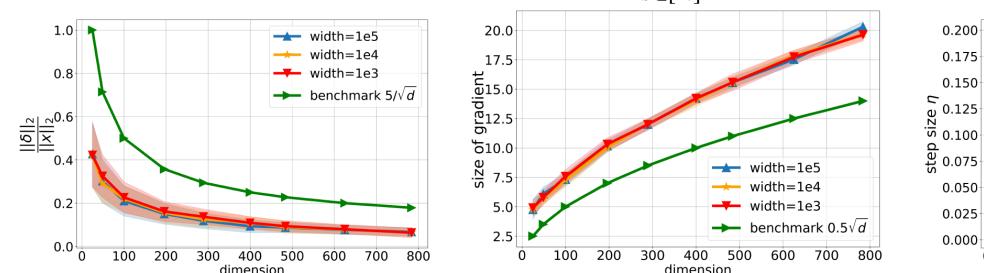


Figure: Minimal normalized $\|\delta\|$ needed to flip the predicted label (left); the norm of the gradient $\|\nabla_x f(x; a, W)\|$ for W in the lazy regime (middle); corresponding step size (right), as a function of the input dimension for a fixed value of $C_0 = 10$ and different network widths *m*.

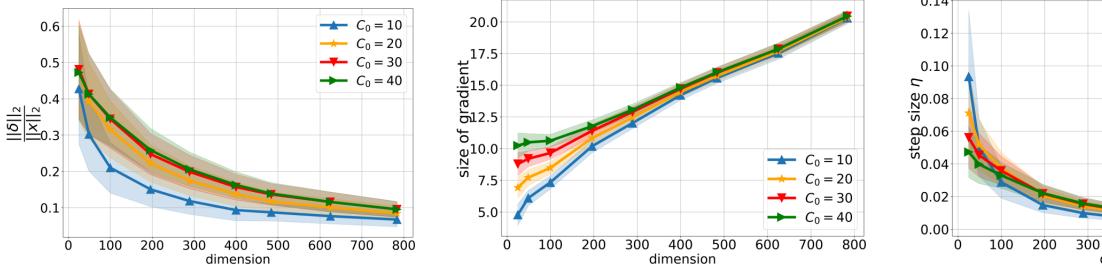


Figure: Minimal normalized $\|\delta\|$ needed to flip the predicted label (left); the norm of the gradient $\|\nabla_x f(x; a, W)\|$ for W in the lazy regime (middle); corresponding step size (right), as a function of the input dimension for a fixed network width of $m = 10^5$ and different value of C_{0} .

- A two-layer width m ReLU n

4. Lazy Regime

Why lazy regime?

2. Computational Tractability: Such \overline{W} can be found by efficient first-order methods such as Stochastic Gradient Descent (SGD).

Definition: The lazy regime is the set of all networks parameterized by (a, W), such that $\mathbf{W} \in \mathscr{B}_{2,\infty}\left(\mathbf{W}_0, C_0/\sqrt{m}\right) = \left\{\mathbf{W} : \|\mathbf{w}_s - \mathbf{w}_{s,0}\|_2 \le C_0/\sqrt{m}, \forall s \in [m]\right\}.$

Question:Are lazy regime networks susceptible to adversarial attacks?

Yunjuan Wang, Enayat Ullah, Poorya Mianjy, Raman Arora Department of Computer Science, Johns Hopkins University

3. Problem Setup

• $\mathscr{X} \subseteq \mathbb{R}^d, \mathscr{Y} = \{\pm 1\}.$

het (a, W),
$$f(x; a, W) := \frac{1}{\sqrt{m}} \sum_{s=1}^{m} a_s$$

$$= \frac{1}{\sqrt{m}} \sum_{s=1}^{m} a_s \sigma(\mathbf{w}_s^{\mathsf{T}} \mathbf{x}).$$

• Attack model: ℓ_2 attack with perturbation budget *R*.

The dominant model for (non-robust) deep learning [JGH18, JT19, ADHL19]. Initialization: 1) $a_s \sim \text{unif}(\{-1, +1\})$, fixed; 2) $w_{s,0} \sim \mathcal{N}(0, I_d), \forall s \in [m]$.

1. Provable generalization: there exists \overline{W} : $\|\bar{w}_s - w_{s,0}\|_2 = \mathcal{O}(1/\sqrt{m})$,

 $\forall s \in [m]$, such that the non-robust generalization error is small.

5. Main Result

A single gradient step suffices to attack lazy regime networks.

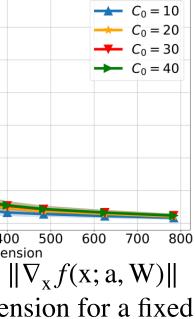
 $\max \{ d^{2.4} \}$

6. Beyond Lazy Regime

- Scaling the network weights with a positive factor for binary classification does not change the prediction.
- Our results can be extended to the following cone

$$C = \left\{ \mathbf{W} \right.$$

Observations: Experimental results **closely match** the theoretical bound



for different network widths and weight deviations: 1. $\|\delta\| = \mathcal{O}(1/\sqrt{d});$ 2. $|\eta| = \mathcal{O}(1/d)$

> *Main Takeaway:* Networks within the lazy training regime are vulnerable to adversarial attacks.

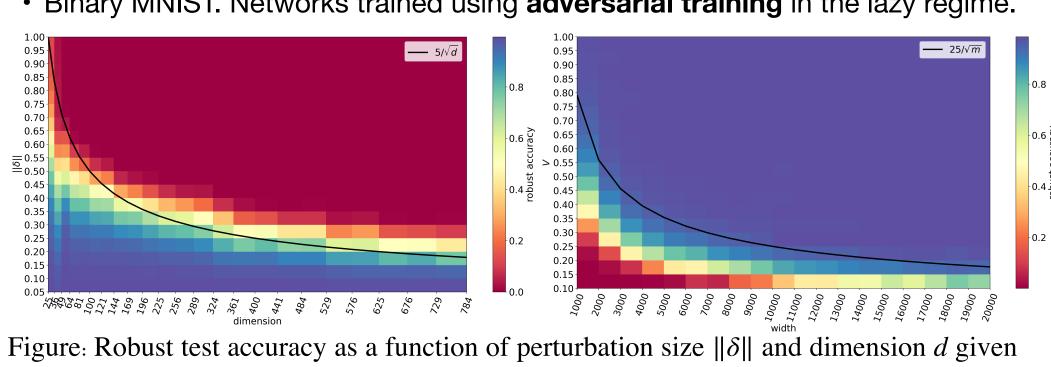
[SSRD19]: Shamir, Adi, et al. "A simple explanation for the existence of adversarial examples with small hamming distance." *arXiv preprint arXiv:1901.10861* (2019).

[DS21]: Daniely, Amit, and Hadas Schacham. "Most ReLU Networks Suffer from 22 Adversarial Perturbations." NeurIPS (2020).

[BCGT21]: Bubeck, Sébastien, et al. "A single gradient step finds adversarial examples on random two-layers neural networks." NeurIPS (2021).

[BBC21]: Bartlett, Peter, Sébastien Bubeck, and Yeshwanth Cherapanamjeri. "Adversarial examples in multi-layer random relu networks." NeurIPS (2021).

[JT19]: Ji, Ziwei, and Matus Telgarsky. "Polylogarithmic width suffices for gradient descent to achieve arbitrarily small test error with shallow relu networks." In ICLR (2020).



1.a sharp drop in robust accuracy about the $\mathcal{O}(1/\sqrt{d})$ threshold for the perturbation budget $\|\delta\|$ as predicted by the theorem. 2.a phase transition in the robust test accuracy at the value of Varound $\mathcal{O}(1/\sqrt{m})$ as required by the theorem.

: With probability at least $1-\gamma$, for all $\mathrm{W}\in\mathscr{B}_{2,\infty}\left(\mathrm{W}_0,C_0/\sqrt{m}
ight)$

$$ign(f(x; a, W)) \neq sign(f(x + \delta; a, W))$$

where $\delta = \eta \nabla_{\mathbf{x}} f(\mathbf{x}; \mathbf{a}, \mathbf{W})$ with $|\eta| = \mathcal{O}(1/d)$,

⁴,
$$\mathcal{O}\log(1/\gamma) \} \le m \le \mathcal{O}\left(\exp(d^{0.24})\right)$$

Remark: Imperceptible perturbation $\|\delta\| = \mathcal{O}(1/\sqrt{d})$.

Corollary: W.h.p., for all $W \in \mathscr{B}_{2,\infty}\left(W_0, C_0/\sqrt{m}\right)$ the robust error is greater than 0.9.

$$\exists r > 0 : \| r \mathbf{W} - \mathbf{W}_0 \|_{2,\infty} \le C_0 / \sqrt{m}$$

• Binary MNIST. Networks trained using adversarial training in the lazy regime.

a fixed network width and fixed value of the maximal deviation of weight vectors (left); Robust test accuracy as a function of width *m* and maximal deviation *V* given a fixed dimension and fixed perturbation size (right).

Observations:

