# Robust Learning for Data Poisoning Attacks

## Background

- Machine Learning systems are fragile, susceptible to attacks.
- Types of attacks: inference-time attacks, data poisoning attacks.
- Data poisoning attacks: the adversary manipulates the training data.
- $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$   $\tilde{S} = \{(\tilde{\mathbf{x}}_i, \tilde{y}_i)\}_{i=1}^n$   $\tilde{S} = \{(\tilde{\mathbf{x}}_i, \tilde{y}_i)\}_{i=1}^n$
- Backdoor attack,
- Clean label attack:  $\tilde{\mathbf{x}}_i = \mathbf{x}_i + \delta_i$ ,  $\tilde{y}_i = y_i$ ,
- Label flip attack:  $\tilde{x}_i = x_i$ ,  $\tilde{y}_i = -y_i$  with probability  $\beta$ .

Notation:  $B = \max \|\delta_i\|_2$  is per-sample perturbation; S =

is overall perturbation;  $\beta$  is probability of label flips;  $\tilde{\mathcal{O}}$  hides polylogarithmic dependence on n.

### **Convex Learning Problem (Warm-up)**

- Input/Label spaces  $\mathscr{X} \subseteq \mathbb{R}^d$ ,  $\mathscr{Y} = \{\pm 1\}$ ; distribution  $\mathscr{D}$
- Goal: solve the stochastic optimization problem

$$\min_{\mathbf{w}\in \mathsf{W}} F(\mathbf{w}) := \mathbb{E}_{(\mathbf{x}, \mathbf{y})\sim \mathscr{D}}[\ell(\mathbf{y}f(\mathbf{x}; \mathbf{w}))],$$

where W is a convex set,  $\ell$  is convex in W.

 Standard approach is to use SGD, where the learner tak gets access to a first order stochastic oracle for  $\hat{g}(w) \in$ Observation: data poisoning attacks ( $\delta_i$ ) can be viewed as poisoning attacks ( $\zeta_i$ ).

• 
$$\delta_i = \tilde{\mathbf{x}}_i - \mathbf{x}_i$$
.

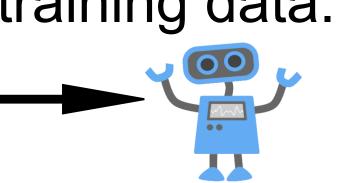
• 
$$\zeta_i = \tilde{g}(w_i) - \hat{g}(w_i).$$

**Theorem** (Robustness of SGD). Excess risk bound for clean label attacks:

$$\mathbb{E}[F(\bar{\mathbf{w}})] - F(\mathbf{w}_*) \le O(\frac{1}{\sqrt{n}} + \frac{\sum_{i < n} \|\zeta_i\|}{n})$$

where the expectation is w.r.t. the initialization and the train Remark: 1.  $\sum \|\zeta_i\| = \mathcal{O}(\sqrt{n})$  gives no significant statistic l < n

2. The above upper bound is tight in an information sense (see paper for a lower bound).



$$= \sum_{i=1}^{n} ||\delta_i||_2$$
  
es poly-

$$\mathcal{D} \text{ on } \mathcal{X} \times \mathcal{Y}.$$

kes w and  

$$\in \partial F(w)$$
.

Two-layer neural networks

A two-layer ReLU net parameterized by (a, W  

$$f(x; a, W) := \frac{1}{\sqrt{m}} \sum_{s=1}^{m} a_s \sigma(w_s^T x)$$
, ReLU:  $\sigma(z)$ , ne

Trained by online SGD using logistic loss.

Goal: minimize  $L(W) := \mathbb{P}_{(x,y)\sim \mathcal{D}}(yf(x;a,W) < 0).$ 

#### Key Assumptions

There exists a margin parameter  $\gamma > 0$ , and a linear separator  $\bar{v}: \mathbb{R}^d \to \mathbb{R}^d$ , s.t.

- $\mathbb{E}_{z}[\|\bar{v}(z)\|^{2}] < \infty$ ,
- $\|\bar{v}(z)\|_2 \leq 1$  for all  $z \in \mathbb{R}^d$ ,
- $\mathbb{E}_{z \sim \mathcal{N}(0, I_d)}[y\langle \overline{v}(z), x \mathbb{I}[z^\top x \ge 0] \rangle] \ge \gamma$  for almost all  $(x, y) \sim \mathcal{D}$ .

#### Main Results

**Theorem:** With probability at least  $1 - \delta$ , we show the following for the iterates of SGD, Regime A (clean label attack, large per-sample perturbation, small overall perturbation):  $\frac{1}{2}\sum L(W_i) \lesssim \frac{\ln^2(\sqrt{n/4}) + \ln(24n/\delta)}{2}$ 

provided that  $B \leq \tilde{\mathcal{O}}(\gamma/\sqrt{d}), \ \tilde{\mathcal{O}}(1/\gamma^8) \leq m \leq \tilde{\mathcal{O}}(\gamma/\sqrt{d})$ Remark: Regime A requires  $S \lesssim \gamma^2 \sqrt{n}$  to allow a non-empty width range. Regime B (clean label attack, small per-sample perturbation, large overall perturbation):  $\ln^2(\sqrt{n/4}) + \ln(24n/\delta)$ 

$$\frac{1}{n} \sum_{i < n} L(\mathbf{W}_i) \lesssim \cdot$$

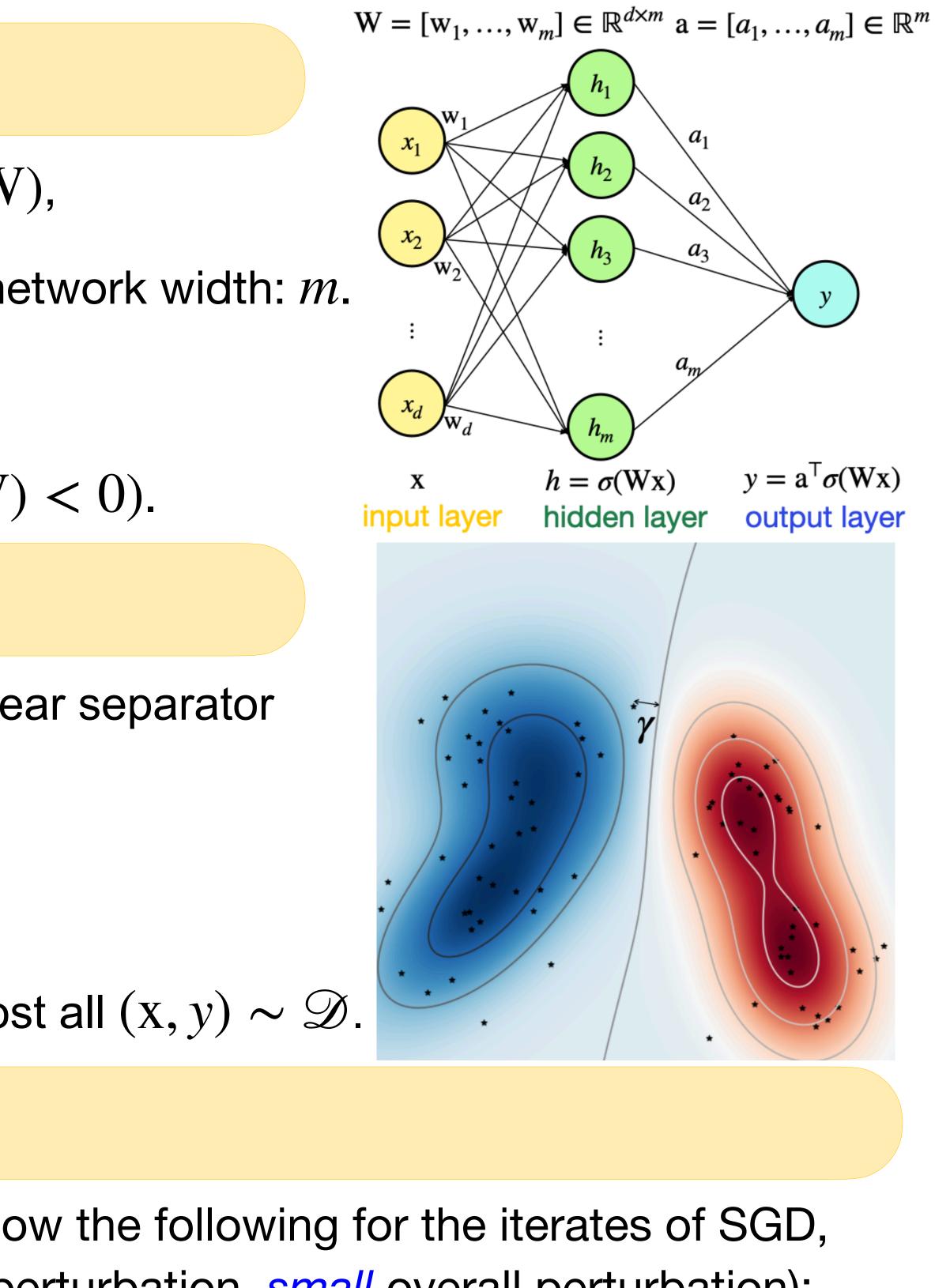
for  $m \ge \tilde{\mathcal{O}}(1/\gamma^8)$ , provided that  $B \lesssim \min\{\frac{1}{\sqrt{md}}$ 

Remark: Regime B allows a larger overall perturb Regime C (label flip attack):

| ning complee     | $\frac{1}{n} \sum_{i < n} L(\mathbf{W}_i) \lesssim \frac{\ln n}{n}$                                                                   |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| aining samples.  | $2 (1 \cdot 8)$ $\ln(n/$                                                                                                              |
| stical overhead. | for $m \geq \tilde{\mathcal{O}}(1/\gamma^8)$ , provided that $\beta \lesssim \frac{\ln(n/\delta)}{(\sqrt{\ln(n/\delta)} + \delta)^2}$ |
| tion-theoretic   | Remark: 1. For regime A and C, the generalization                                                                                     |
|                  | the effective overall perturbation budg                                                                                               |
|                  | 2. All three regimes require an upperbour                                                                                             |

#### Yunjuan Wang, Poorya Mianjy, Raman Arora

Department of Computer Science, Johns Hopkins University



$$\sqrt{n\gamma^2}$$
  
 $\delta(n/\gamma^4 S^2).$ 

$$n\gamma^2$$
  $\gamma$   $\gamma$ 

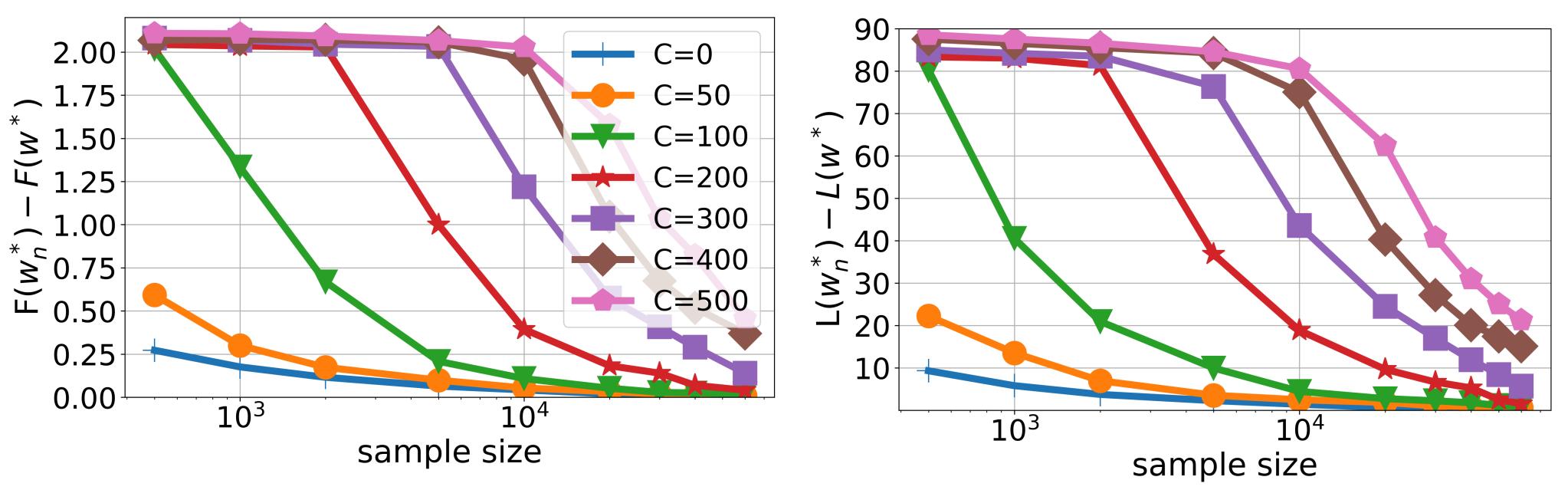
$$+\sqrt{m\ln(m/\delta)}, \gamma + \sqrt{d} + \sqrt{\ln(mn/\delta)}$$
  
pation budget of order  $\mathcal{O}(n)$ .

$$\frac{\ln^{2}(\sqrt{n/4}) + \ln(16n/\delta)}{\sqrt{n\gamma^{2}}}$$
  
$$\frac{n/\delta}{\sqrt{n}} + \ln^{2}(n)}{\sqrt{m(1+\gamma)}\gamma^{2}\sqrt{n}}.$$

on bounds are of the same rate of  $\mathcal{O}(1/\sqrt{n})$ , dget are almost of the same order  $\tilde{O}(\sqrt{n})$ . 2. All three regimes require an upperbound and lowerbound on the network width.

# Experiments

- Generate the poisoned data:



on the given sample of size *n*.

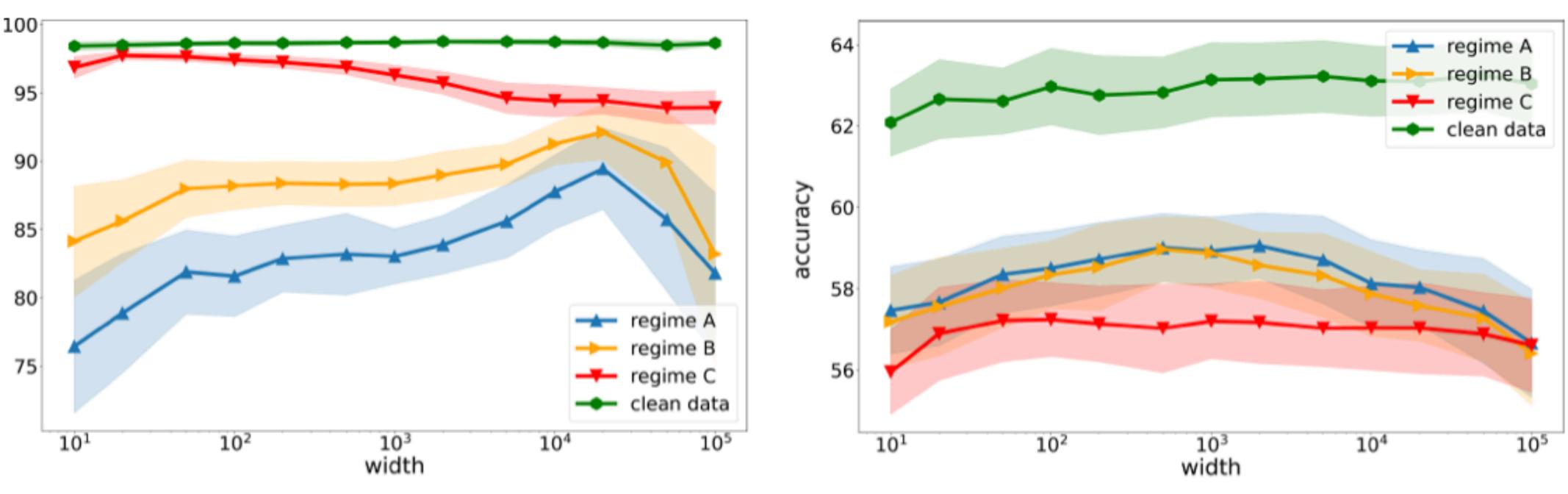


Figure: Clean test accuracy as a function of network width under clean data setting and poisoned data setting on MNIST (left) and CIFAR10 (right).

- they're too wide.

Main Takeaway: networks that are extremely over-parameterized are more susceptible to attacks.



 Propose negated loss by flipping the sign on both the model prediction and the cross-entropy loss, i.e  $\ell'_{-}(z) := -\ell'(-z)$ , where z is the model prediction.

1) Use mini-batch SGD to learn the best model parameters  $W^*$  on the clean data. 2) Take a stochastic gradient ascent step on the negated loss to maximize the negated loss function  $\ell'_{(x;w^*)}$  with respect to x.

3) Project onto the constraints -- the  $\ell_{2,1}$  (regime A) or  $\ell_{2,\infty}$ -norm ball (regime B).

Figure: The excess loss  $F(w_n^*) - F(w^*)$  (left); and the excess error  $L(w_n^*) - L(w^*)$ (right), as a function of sample size n with different corruption parameter C under regime A. Specify overall budget  $S = C\sqrt{n}$ . Here,  $w_n^*$  denotes the optimal parameters

• The generalization accuracy decreases if the models are not wide enough or if

• The inverted U curve challenges the nascent view in the deep learning literature that larger models generalize better, at least under adversarial perturbation.