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• Input/Label spaces , ; distribution  on . 
• Goal: solve the stochastic optimization problem


, 


where  is a convex set,  is convex in .

• Standard approach is to use SGD, where the learner takes  and 

gets access to a first order stochastic oracle for .

Observation: data poisoning attacks ( ) can be viewed as oracle 
poisoning attacks ( ).


• .


• .

Theorem (Robustness of SGD). Excess risk bound for clean label 
attacks: 

                      

where the expectation is w.r.t. the initialization and the training samples. 

Remark: 1.  gives no significant statistical overhead. 

              2. The above upper bound is tight in an information-theoretic 
sense (see paper for a lower bound).
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There exists a margin parameter , and a linear separator
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• Machine Learning systems are fragile, susceptible to attacks. 
• Types of attacks: inference-time attacks, data poisoning attacks. 
• Data poisoning attacks: the adversary manipulates the training data. 
•                         
• Backdoor attack, 
• Clean label attack: , 

• Label flip attack: ,  with probability . 

Notation:  is per-sample perturbation;  

is overall perturbation;  is probability of label flips;  hides poly-
logarithmic dependence on .
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• A two-layer ReLU net parameterized by ,  

, ReLU: , network width: .


• Trained by online SGD using logistic loss.


• Goal: minimize .
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L(W) := ℙ(x,y)∼𝒟(yf(x; a, W) < 0)

Theorem: With probability at least , we show the following for the iterates of SGD,

Regime A (clean label attack, large per-sample perturbation, small overall perturbation):





provided that , .

Remark: Regime A requires  to allow a non-empty width range.

Regime B (clean label attack, small per-sample perturbation, large overall perturbation):





for , provided that .


Remark: Regime B allows a larger overall perturbation budget of order .

Regime C (label flip attack):





for , provided that .


Remark: 1. For regime A and C, the generalization bounds are of the same rate of , 

                   the effective overall perturbation budget are almost of the same order .

              2. All three regimes require an upperbound and lowerbound on the network width.
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Figure: Clean test accuracy as a function of network width under clean data setting and 
poisoned data setting on MNIST (left) and CIFAR10 (right).
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Main Takeaway: networks that are extremely over-parameterized 
are more susceptible to attacks.

Figure: The excess loss  (left); and the excess error  
(right), as a function of sample size  with different corruption parameter  under 
regime A. Specify overall budget . Here,  denotes the optimal parameters 
on the given sample of size .
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• Propose negated loss by flipping the sign on both the model prediction and the 
cross-entropy loss, i.e , where z is the model prediction. 
• Generate the poisoned data:  
1) Use mini-batch SGD to learn the best model parameters  on the clean data.  
2) Take a stochastic gradient ascent step on the negated loss to maximize the 
negated loss function  with respect to . 
3) Project onto the constraints -- the  (regime A) or -norm ball (regime B).
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• The generalization accuracy decreases if the models are not wide enough or if 
they’re too wide.


• The inverted U curve challenges the nascent view in the deep learning literature 
that larger models generalize better, at least under adversarial perturbation.


